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SUMMARY

Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The
numerical algorithm is based on the Crank–Nicolson scheme for time integration, Newton’s method for
linearization, and a least-squares finite element method, together with a matrix-free Jacobi conjugate
gradient technique. The main objective in this work is to demonstrate how the least-squares finite element
method, together with an iterative procedure, deals with the capillary-traction boundary conditions at the
free surface, which involves the coupling of velocity and temperature gradients. Mesh refinement studies
were also carried out to validate the numerical results. © 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Fluid motion is mainly driven by pressure force, shear stresses, buoyancy force and surface
tension forces. Recently, buoyancy- and surface tension-driven flows, i.e. thermocapillary
flows, became increasingly important in the understanding of welding and crystal growth
processes. In thermocapillary flows, thermal gradients along a free surface induce surface
tension gradients, which result in a net surface tension force acting on the free surface.

The behavior of thermocapillary flows is characterized by a dimensionless number, the
Marangoni number, Ma (Peclet number for thermocapillary flows). Another outstanding
characteristic of thermocapillary flows is that velocity and temperature gradients are interre-
lated on the free surface as boundary conditions. Thus, a robust numerical method is required
to deal with such coupling of velocity and temperature gradients on the free surface.

Zebib et al. [1] present a finite difference method for steady state two-dimensional thermo-
capillary flows. Carpenter and Homsy [2] used a similar finite difference method with a
streamfunction and vorticity formulation. Shyy and Chen [3] present steady state, two-dimen-
sional results for low Prandtl number fluids in solidification processes. It is well known that the
oscillatory behavior of low Prandtl number melts has significant effects on the quality of
crystals, semiconductor materials and alloys. Thus, much effort has been devoted to the study
of oscillatory thermocapillary flows. Hadid and Roux [4] and Mundrane and Zebib [5]
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investigated oscillatory states in two-dimensional thermocapillary flows for low Prandtl
number fluids. Kanoff and Grief [6] showed oscillatory thermocapillary flows for a fluid with
a quadratic dependence of surface tension on temperature.

Numerical results for three-dimensional thermocapillary flows are relatively scarce in the
literature. Mundrane and Zebib [7] present results for thermocapillary flows in a rectangular
box. Using a finite difference technique with a primitive variable approach on a non-staggered
grid, Babu and Korpela [8] provide results of thermocapillary flows in a cubic box for
Reynolds numbers of 100 and 300, with Prandtl numbers of 0.01 and 1.0.

In this work, a least-squares finite element method (LSFEM) is used to simulate thermocap-
illary flows. The main advantage of the LSFEM is that it leads to symmetric, positive definite
(SPD) linear systems that can be solved efficiently by a matrix-free preconditioned conjugate
gradient method, with minimum computer memory requirement for three-dimensional flows
and transport processes. Recently, it has been proven that the LSFEM is a promising method
for fluid flows and transport processes with Dirichlet boundary conditions [9–15]. Theoretical
results using the LSFEM for a variety of differential equations have also been obtained
[16–19]. The objective in this work is to demonstrate how the LSFEM deals with the
capillary-traction boundary conditions at the free surface, which involves the coupling of
velocity and temperature gradients.

2. MATHEMATICAL MODELING

2.1. Well-posed problem

Consider time-dependent incompressible fluid flows in a domain V¦R3 bounded by
GD@GN, where GD and GN are the Dirichlet and capillary-traction boundaries, respectively,
and GDSGN=0. Figure 1 shows the geometry of a cubic cavity. The left wall (z=0) is heated
at high temperature Th and the right wall (x=1) is cooled at low temperature Tc. The other
walls are adiabatic, except the top surface which is free and in contact with the air above. The
fluid motions are induced by surface tension gradients on the liquid–gas interface, where

Figure 1. Flow configuration of three-dimensional thermocapillary flows.
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Figure 2. Basic structure of the algorithm of time-dependent LSFEM with JCG.

temperature gradients exist. The effect of the surface deformation is neglected for the condition
of small capillary number Ca=gTr/sr. The mass, momentum and energy conservation are
described by the Navier–Stokes equations and energy balance equation with the Boussinesq
assumption. The spatial and temporal co-ordinates are denoted by x={x, y, z}T�V and
t� (0,�). The governing equations in dimensionless form are as follows, in V× (0,�)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)
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where u={u, 6, w}T is the velocity vector, p is the pressure deviation from hydrostatic, and T
the temperature; Re=gTrH/mn is the Reynolds number, Pr=n/a is the Prandtl number,
Ma=Re ·Pr is the Marangoni number, Bo=Gr/Re is the Bond number, and Gr= �g�bTrH3/n2

is the Grashof number; g= −(s/(T �(T=T r)
is the surface tension temperature coefficient,

s=sr−g(T−Tr) is the surface tension, Tr is the reference temperature, H is the characteristic
length, m is the fluid viscosity, r is the fluid density, n=m/r, a is the thermal diffusivity, g is
the gravity acceleration, and b is the thermal expansion coefficient of the fluid.

Figure 3. Augmenting flow for Ma=8.4×103, Pr=0.0149 and Gr=3.09×106 at steady state: (a) streamfunction,
(b) temperature contours, (c) vorticity contours and (d) velocity vectors.
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Figure 4. Opposing flow for Ma=8.4×103, Pr=0.0149 and Gr=3.09×106 at steady state: (a) streamfunction, (b)
temperature contours, (c) vorticity contours and (d) velocity vectors.

In this work, the surface deformation is neglected. This assumption is justified in the case of
small capillary number [1]. It also simplifies numerical simulations.

Initially, it is assumed that the fluid remains motionless, heat conduction is dominant and
temperature distribution is linear along the x-direction,

u=0

T=
1
2
−x

Ì
Ã

Ã

Â

Å

, for t=0. (4)

The boundary conditions, in dimensionless form, for adiabatic or isothermal walls and the
free surface are as follows, for t]0,

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)
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Figure 5. Results for Re=67, Pr=0.0149 and Gr=2.0×104 at the dimensionless time level of 45 in the periodic state
regime: (a) streamfunction, (b) temperature contours (c) vorticity contours and (d) velocity vectors.
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Figure 6. Time history of dimensionless temperature at the center of the cavity.

T= −
1
2

, on x=1, (9)

(T
(z

=0, on z=0, 1, (10)

(T
(y

=0, on y=0, 1, (11)

(u
(y

= −
(T
(x

,
(w
(y

= −
(T
(z

, on y=1. (12)

The thermocapillary flow problem involves three types of boundary conditions: the Dirichlet-
type boundary conditions (5)–(9), the Neumann-type boundary conditions (10) and (11) and
the capillary-traction boundary conditions (12). On the free surface, both velocity and
temperature gradients are unknown and need to be determined.

There are three constraints for the incompressible flow:
Constraint 1. The boundary value ud satisfies&

GD

n ·ud dS=0, for t]0. (13)

Constraint 2. The initial velocity u0={u0, 60, w0}T is subject to

9 ·u0=0, in V. (14)

Constraint 3. The initial velocity u0 and the boundary value ud are subject to

n ·u0=n ·ud, on GD. (15)

By Equation (15), Constraint 1 also requires the initial velocity profile to satisfy&
GD

n ·u0 dS=0, for t=0, (16)

where n is the normal vector. In summary, Constraint 1 requires that the mass conservation
law must be satisfied at any time and Constraint 2 demands that fluid flow must be
divergence-free in the domain V initially. If any of the three constraints are violated, the
Navier–Stokes problem is ill-posed and has no solution [20,21].

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)
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2.2. First-order formulation

Introducing vorticity, v={vx, vy, vz}T and heat flux q={qx, qy, qz}T, the initial boundary
value problem is reduced into the first-order formulation as

Figure 7. Transient velocity vectors and temperature contours on the plane of z=0.5 for Re=1000, Pr=1.0
(Ma=1000).
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Figure 8. Transient velocity vectors and temperature contours on the plane of y=0.5 for Re=1000, Pr=1.0
(Ma=1000).
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Figure 9. Transient velocity vectors and temperature contours on the plane of x=0.5 for Re=1000, Pr=1.0
(Ma=1000).
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Figure 10. Distributions of velocity u and temperature T along z=0.5 on the free surface at different time levels for
Re=1000, Pr=1.0 (Ma=1000).

q+
1

Ma
9T=0. (21)

Since vorticity v and heat flux q are involved in the first-order system of equations, two
additional constraints are needed to restrict the first-order elliptic system (17)–(21),
Constraint 4. The solenoidality of vorticity:

9 ·v=0. (22)

Constraint 5. The non-rotationality of heat flux:

9×q=0. (23)

The properties of these constraints have been discussed in detail by Jiang and Povinelli [11],
Tang [22] and Tang and Tsang [12,15].

From Equations (4) and (21), an additional initial condition should be specified,

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)
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qx=
1

Ma
, at t=0, (24)

as consistent with the assumption of the linear temperature distribution (4). Since the equation
system (17)–(23) is first-order, only Dirichlet-type boundary conditions are required for
well-posedness. The boundary conditions for temperature gradients on the vertical walls (10)
and (11) and for velocity and temperature gradients on the free surface (12) become

Figure 11. The steady state velocity u and w, temperature T, and heat flux qx distribution on the free surface for
Re=1000, Pr=1.0 (Ma=1000).
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Figure 12. The steady state velocity vectors and temperature contours on the plane of z=0.5 for Pr=1.0.

qz=0, on z=0, 1, (25)

qy=0, on y=0, 1, (26)

v z= −Ma qx

vx=Ma qz

"
on y=1. (27)

Equation (27) describes the boundary conditions on the free surface in the context of the
first-order system of equations used in the LSFEM. It is worth mentioning that, although two
additional variables, vorticity v and heat flux q, are included in the first-order system of
equations, no artificial boundary conditions for vorticity and heat flux are necessary at the
boundary where velocity and temperature boundary conditions are specified.

3. NUMERICAL METHOD

A time-accurate algorithm has been developed for three-dimensional incompressible flow and
natural convection [15]. In this work, the algorithm is used to solve two- and three-dimensional
thermocapillary flows. The algorithm is based on an implicit, fully coupled and time-accurate
solution in terms of primitive variables of first-order velocity–pressure–vorticity–tempera-
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ture–heat flux formulation of the Navier–Stokes equations and energy balance equation.
Temporal discretization of Equations (17) and (20) is implemented by the Crank–Nicolson
method with second-order accuracy in time,
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where superscript n denotes the nth time level, and

Figure 13. The steady state velocity vectors and temperature contours on the plane of y=0.5 for Pr=1.0.
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Figure 14. The steady state velocity vectors and temperature contours on the plane of x=0.5 for Pr=1.0.
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where Dt0 =1/2Dt and Dt is the time step.
The convective terms in Equations (28) and (32) are linearized by Newton’s method with

extensive linearization steps,

(u ·9u)(n+1)=u(n+1,m) ·9u(n+1,m+1)+u(n+1,m+1) ·9u(n+1,m)− (u ·9u)(n+1,m), (37)

(u ·9T)(n+1)=u(n+1,m) ·9T (n+1,m+1)+u(n+1km+1) ·9T (n+1,m)− (u ·9T)(n+1,m). (38)

Substituting Equations (37) and (38) into the equation system (28)–(34), one gets,
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where

Figure 15. The steady state distributions of velocity u and temperature T along z=0.5 on the free surface for Pr=1.0.

Table I. Computer memory and CPU times on a HP-735 workstation

Average CPU times for a Newton iteration (s)Storage (Mb)Number of elements

30×30×30 45 38
9810440×40×40

50×50×50 201 287

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)
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Figure 16. Mesh refinement calculations for velocity u and 6 along the center lines for Re=100 and Pr=1.0.

gu
(n+1,m)= (u ·9u)(n+1,m)

gT
(n+1,m)= (u ·9T)(n+1,m)

"
, (46)

and superscript m denotes the mth Newton iteration step. Extensive linearization steps will be
used in the algorithm to achieve a high accurate solution.

As mentioned before, the boundary conditions (27), i.e. both components vz, vx and heat
flux components qx, qz are unknown on the free surface. In the following, two simple ways are
proposed to treat the boundary conditions on the free surface (Equation (27)) in an iterative
manner:

(1) using vorticity components vz and vx as the boundary conditions that are calculated by
heat flux components qx and qz at the previous Newton linearization step,

v z
(n+1,m)= −Ma qx

(n+1,m)

vx
(n+1,m)=Ma qz

(n+1,m)

"
on y=1; (47)

(2) using heat flux components qx and qz as the boundary conditions that are calculated by
vorticity components vz, vx at the previous Newton linearization step,
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L.Q. TANG ET AL.1000

qx
(n+1,m)= −

v z
(n+1,m)

Ma

qy
(n+1,m)=

vx
(n+1,m)

Ma

Ì
Ã

Ã

Â

Å

on y=1. (48)

Numerical experiment shows that for the boundary conditions (47), if qx and qy are oscillating,
the oscillations will be amplified by Ma times and the oscillating vorticity boundary conditions
will cause all the results to oscillate. Since heat flux components qz and qy are specified on the
vertical walls (y, z=0, 1) and Constraint 5 sets a kinematic relationship between heat flux
components so as to eliminate the oscillations of the components, an accurate solution of heat
flux can be obtained on the free surface. Therefore, it is very important for thermocapillary
problems to use Constraint 5 to obtain accurate solutions. For boundary conditions (48),
however, because no vorticity components are specified on the boundaries, vorticity compo-
nents are not restricted with fixed boundary values. Small perturbations of vorticity compo-
nents may cause a large error, even if the vorticity components still satisfy Constraint 4.
Accurate vorticity approximations cannot be always obtained by the boundary conditions (48)
because the numerical solutions do not guarantee convergence. Therefore, the boundary
conditions (47) for the thermocapillary flow problem are recommended.

Figure 17. Mesh refinement calculations for temperature along the center lines for Re=100 and Pr=1.0.
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The structure of the algorithm for the accurate transient solution is shown in Figure 2,
which consists of three iterative loops: (1) time loop—to advance the solution by using the
result of the previous time level until the termination time is reached or a steady state solution
is obtained, (2) Newton’s linearization iteration—to specify the vorticity components vx and
vz as boundary conditions on the free surface for each mth Newton’s linearization level and
to linearize the non-linear convective terms by extensive iteration steps at the (n+1)th time
leveI; and (3) Jacobi conjugate gradient iteration—to solve a SPD linear system of equations
at the (n+1)th time level and the (m+1)th linearization step until the residuals of the linear
system are sufficiently small.

The initial boundary value problem (4)–(9), (39)–(45), (24)–(26) and (47) can simply be
expressed as

{L{v}}(n+1,m+1)={f}(n)+{g}(n+1,m) in V, t\0, (49)

[B] · {v(x, t)}={gd(x, t)} on GD, t]0, (50)

{v(x, 0)}={v0(x)} in V, t=0, (51)

where {v}={u, 6, w, p, vx, vy, vz, T, qx, qy, qz}T, [B] is the coefficient matrix of boundary
conditions, {gd(x, t)} and {v0(x)} are the given functions of boundary and initial conditions;
and the operator matrix can be denoted in the form of block matrix as
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, (52)
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and the coefficients are defined as
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and the right-hand side vectors are
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4. NUMERICAL RESULTS AND DISCUSSION

4.1. Two-dimensional thermocapillary flows

The first two case studies are two-dimensional augmenting and opposing buoyant thermo-
capillary flows in a square cavity. The side wall at the left-hand side is maintained at a higher
temperature than the side wall at the right-hand side. The bottom wall and the top free surface
are insulated. A mesh system of 100×100 bilinear elements are used to achieve high resolution
results. The parameters are set as Ma=8.3×103, Pr=0.0149 and Gr=3.09×106.

Augmenting flow is a flow driven by the buoyancy force due to temperature gradients acting
in the same direction as the surface tension force on the free surface. Figure 3 shows the
clockwise augmenting flow in a square cavity. The primary flow vortex is seen to exist near the
right wall, and the velocity vectors suggest the formation of a boundary layer near the top
right wall. The temperature contours show the distortion of the conduction profiles by the
thermocapillary flow, and the streamfunctions demonstrate the existence of a strong vortex.
For this case study, no literature result is available for comparison.
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Figure 18. Error analysis of residuals for (a) the solenoidality of vorticity and (b) the non-rotationality of heat flux.

Figure 19. Convergence history of Newton’s method for 3D thermocapillary flows.
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For opposing buoyant thermocapillary flows, the surface tension-driven flow opposes the
buoyancy-driven flow. The variation of surface tension with temperature is negative. Figure 4
shows that the buoyancy-induced vortex is confined to the middle of the cavity, but a strong
counterrotating vortex-driven by the surface tension force is found at the upper left corner of
the cavity. The results compare well with those given by Shyy and Chen [23].

In the third case study, the intention is to simulate the oscillatory thermocapillary flow of a
low Prandtl number fluid in a rectangular cavity with aspect ratio of 4. The dimensionless
parameters are set as Re=67, Pr=0.0149 and Gr=2.0×104. Mundrane and Zebib [5] showed
the existence of a periodic flow solution for these parameters. Figure 5 shows the streamfunctions,
temperature contours, vorticity and velocity vectors for the flow system in the periodic state at
a dimensionless time level of 45. Figure 6 shows the time history of the dimensionless temperature
at the center of the cavity. Although it is not possible to have exact comparison between the
transient results here and those by Mundrane and Zebib [5], Figures 5 and 6 are qualitatively
the same as theirs.

4.2. Three-dimensional thermocapillary flows

Now, consider three-dimensional thermocapillary flows under a low gravity condition, i.e.
Bo=0. The following case studies are relevant to crystal growth processes in a low gravity
condition, at which buoyancy-induced flows (natural convection) become negligible compared
with dominant thermocapillary flows.

4.2.1. Temporal features. To study the temporal features of three-dimensional thermocapillary
flows, velocity vectors and temperature contours on the cross-section (x, y, z=0.5) of the cavity
at different time levels are shown in Figures 7–9. The velocity vectors, on the cross-section of
z=0.5 for the thermocapillary flow, as shown in Figure 7, are similar to those for low Reynolds
number lid-driven cavity flow. However, as shown in Figure 8, the velocity vector on the
cross-section of y=0.5 are totally different from those for lid-driven cavity flows [14]. The
temperature contours become more tortuous with time, as shown in Figures 7 and 8. On the
cross-section of x=0.5, two vortices are observed at the corners of the free surface and
temperature contours move down with time, as shown in Figure 9. The velocity component u
and the temperature profile along the center line (z=0.5) on the free surface at different time
levels for Re=1000 and Pr=1.0 are given in Figure 10. The peak of the velocity component
u moves toward the vertical wall of x=1.0 with time. Near the vertical wall of x=1.0, the velocity
profile of component u becomes steep as the temperature increases with time. The steady state
velocity u and w, temperature T, and heat flux qx distributions on the free surface are shown
in Figure 11.

4.2.2. Effects of Reynolds number. Consider flow patterns for Reynolds numbers of Re=100–
1000, with a fixed Prandtl number of Pr=1.0. Steady state velocity vectors and temperature
contours on the center cross-section (x, y, z=0.5) of the cavity for different Reynolds numbers
are shown in Figures 12–14. No significant difference of velocity vectors is observed, but the
distortion of temperature contours becomes more pronounced with the increase of Reynolds
numbers on the cross-sections of z, y=0.5, as shown in Figures 12 and 13. On the cross-sections
of x=0.5, the vortices at the corners of the free surface become stronger, and temperature
contours move down with the increase of Reynolds number, as shown in Figure 14. The steady
state velocity component u and the temperature profile along the center line of z=0.5 on the
free surface for different Reynolds numbers and Pr=1.0 are given in Figure 15. The peak of
the velocity component u decreases with the increase of Reynolds number, and the velocity profile
becomes steeper at the wall. But the temperature increases near the vertical wall of x=1.0 with
the increase in Reynolds number.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)



L.Q. TANG ET AL.1006

It should be mentioned that the vortices at the corners of the free surface for Re=100 and
Pr=1.0 are not observed in the work by Babu and Korpela [8]. Thus, the following mesh
refinement study was carried out to verify the LSFEM result by using three mesh systems of
30×30×30, 40×40×40 and 50×50×50. A uniform grid is used throughout the domain,
with two fine grids along the walls. The average CPU times for a Newton iteration and
computer memory requirements are given in Table I. The results for velocity components u
and 6, and temperature T along the center lines of x, z=0.5 and y, z=0.5 for Re=100 and
Pr=1.0 are shown in Figures 16 and 17. Figure 16 shows that there are slight oscillations of
velocity components for a mesh system of 30×30×30. The temperature profiles for all the
mesh systems are consistent with each other, as shown in Figure 17. The residuals of Equations
(22) and (23) are defined for three-dimensional flows as

Rv=9 ·v, (63)

and

Rq=
'�(qz

(y
−
(qy

(z
�2

+
�(qx

(z
−
(qz

(x
�2

+
�(qy

(x
−
(qx

(y
�2

. (64)

In this study, particular interest was taken in the residuals Rv and Rq because these residuals
reveal how well Constraints 4 and 5 (Equations (22) and (23)) are reinforced in the LSFEM.
The 12-norm and maximum absolute value of the residuals defined in Equations (63) and (64)
for different mesh systems at the steady state are shown in Figure 18, for Re=100 and
Pr=1.0 (Ma=100). The convergence history of the Newton method for three-dimensional
thermocapillary flows at steady state is given in Figure 19 for different Reynolds numbers and
Pr=1. The result at t=30 is used as the initial guess to calculate the steady state solutions.
At this time level, the velocity components are still quite different from the steady state values.
It takes about 20 Newton steps and 5800 Jacobi conjugate gradient (JCG) iterations to reach
the steady state. It is worth mentioning that it takes about 4200 JCG iterations for the first
Newton step. From Figure 19, it is obvious that the 12-norm decreases with the increase of
Reynolds number in a manner consistent with the result of two-dimensional, lid-driven cavity
flow obtained by Jiang [24]. This implies that it takes more Newton linearization steps for
convergence for higher Reynolds number flows.

5. CONCLUSIONS

A LSFEM with a matrix-free Jacobi conjugate gradient algorithm and Newton’s linearization
is used to simulate a variety of 2D and 3D transient thermocapillary flows. Numerical results
for 2D augmenting, opposing, and oscillatory flows compare well with the literature. Transient
and steady state solutions are presented for 3D flows for Prandtl number Pr=1.0 and
Reynolds number in the range Re=100–1000. The mesh refinement study is carried out to
validate the 3D numerical results. This work demonstrates that the iterative procedure, i.e.
Equation (47), is a robust approach to treat the capillary-traction boundary conditions for
thermocapillary flows.

ACKNOWLEDGMENTS

The work was partially supported by the National Science Foundation (NSF/KY EPSCoR
program), the Center for Computational Sciences at the University of Kentucky and the US
Environmental Protection Agency.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)



SIMULATION OF 2D AND 3D THERMOCAPILLARY FLOW 1007

REFERENCES

1. A. Zebib, G. Homsy and E. Meiburg, ‘High Marangoni number convection in a square cavity’, Phys. Fluids, 28,
3467–3476 (1985).

2. B.M. Carpenter and G.M. Homsy, ‘High Marangoni number convection in a square cavity: Part II’, Phys. Fluids,
2, 137–149 (1990).

3. W. Shyy and M.H. Chen, ‘A study of the transport process of buoyance-induced and thermocapillary flow of
molten alloy’, Comput. Methods Appl. Mech. Eng., 103, 333–358 (1993).

4. H.B. Hadid and B. Roux, ‘Buoyancy- and thermocapillary-driven flows in differentially heated cavities for low
Prandtl number fluids’, J. Fluid Mech., 235, 1–36 (1992).

5. M. Mundrane and A. Zebib, ‘Oscillatory buoyant thermocapillary flow’, Phys. Fluids, 6, 3294–3305 (1994).
6. M. Kanouff and R. Greif, ‘Oscillations in a thermocapillary square cavity’, Int. J. Heat Mass Transf., 37, 885–892

(1994).
7. M. Mundrane and A. Zebib, ‘Two- and three-dimensional buoyant thermocapillary convection’, Phys. Fluids, 5,

810–818 (1993).
8. V. Babu and S.A. Korpela, ‘Three-dimensional thermocapillary convection in a cavity’, Comput. Fluids, 18,

229–238 (1990).
9. P.B. Bochev and M.D. Gunzburger, ‘Accuracy of least-squares methods for the Navier–Stokes equations’,

Comput. Fluids, 22, 549–563 (1993).
10. B.N. Jiang, T.L. Lin and L.A. Povinelli, ‘Large-scale computation of incompressible viscous flow by least-squares

finite element method’, Comput. Methods Appl. Mech. Eng., 114, 213–231 (1994).
11. B.N. Jiang and L.A. Povinelli, ‘Least-squares finite element method for fluid dynamics’, Comput. Methods Appl.

Mech. Eng., 81, 13–37 (1990).
12. L.Q. Tang, T.W. Cheng and T.T.H. Tsang, ‘Transient solutions for three-dimensional lid-driven cavity flows by

a least-squares finite element method’, Int. J. Numer. Methods Fluids, 21, 413–432 (1995).
13. L.Q. Tang and T.T.H. Tsang, ‘A least-squares finite element method for time-dependent incompressible flows with

thermal convection’, Int. J. Numer. Methods Fluids, 17, 271–289 (1993).
14. L.Q. Tang and T.T.H. Tsang, ‘An efficient least-squares finite element method for incompressible flows and

transport processes’, Int. J. Comput. Fluid Dyn., 4, 21–39 (1995).
15. L.Q. Tang and T.T.H. Tsang, ‘Temporal, spatial and thermal features of 3D Rayleigh–Benard convection by a

least-squares finite element method’, Comput. Methods Appl. Mech. Eng., 140, 201–219 (1997).
16. P.B. Bochev and M.D. Gunzburger, ‘Analysis of least-squares finite element methods for the Stokes equations’,

Math. Comput., 63, 479–506 (1994).
17. P.B. Bochev and M.D. Gunzburger, ‘Least-squares methods for the velocity–pressure stress formulation of the

Stokes equations’, Comput. Methods Appl. Mech. Eng., 126, 267–287 (1995).
18. Z. Cai, R.D. Lazarov, T. Manteuffel and S. McCormick, ‘First-order system least-squares for second-order partial

differential equations: Part I’, SIAM J. Numer. Anal., 31, 1785–1799 (1994).
19. A.I. Pehlivanor, G.F. Carey and R.D. Lazarov, ‘Least-squares mixed finite elements for second-order elliptic

problems’, SIAM J. Numer. Anal., 31, 1368–1377 (1994).
20. P.M. Gresho, ‘Incompressible fluid dynamics: some fundamental formulation issue’, Annu. Re6. Fluid Mech., 23,

413–453 (1991).
21. P.M. Gresho, ‘Some current CFD issues relative to the incompressible Navier–Stokes equations’, Comput.

Methods Appl. Mech. Eng., 87, 201–252 (1991).
22. L.Q. Tang, ‘A least-squares finite element method for time-dependent fluid flows and transport phenomena’, Ph.D.

Thesis, University of Kentucky, KY, 1994.
23. W. Shyy and M.H. Chen, ‘Interaction of thermocapillary and natural convection flows during solidification:

normal and reduced gravity conditions’, J. Crystal Growth, 108, 247–261 (1991).
24. B.N. Jiang, ‘A least-squares finite element method for incompressible Navier–Stokes problems’, Int. J. Numer.

Methods Fluids, 14, 843–859 (1992).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 983–1007 (1998)


